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The role of N,O emissions in the life cycle assessment
of a water resource recovery facility in Copenhagen
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BACKGROUND & MOTIVATION

= \Wastewater treatment in Denmark contributes to 10% of the total waste sector’'s GHG
emissions (Nielsen et al., 2020)

= N,O emissions from nitrification/denitrification are a major source of GHG from
wastewater

= \Wastewater is also a resource.

» Residual sludge contains nutrients such as phosphorous (app. 5,000 ton Plyear). 24%
of sludge is incinerated and hence lost (Jensen et al., 2015)

= Ca. 51 WWTPs in Denmark produce biogas hence energy from sludge !

[1] https://xn--kkkenkvrnen-g9a1u.dk/affaldssortering/biogasproduktion-i-danmark/

7 September 2022 DTU Sustain — Environmental and Resource Engineering Maria Faragd, PhD fellow




=
=
=

i

CASE STUDY

& Bioros

= Capacity of 400,000 PE
= Energy recovery plant
= Exporting biogas, heat

Future strategy:

= Retrofitting the plant to a water resource
recovery facility (WRRF) in the year
20251

dore WWTP

Major goals:
» Reduce CO, emissions
= Recover more energy

= Recover phosphorus and other resources
like sand and metals

[1] https://projekt-varga.dk/en/about-varga/
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THE "VARGA” PROJECT
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Fig. 1. Main system components/boundaries of the full-scale water resource recovery facility (WRRF). WP: work packages for implementing different resource
recovery technologies. Figure edited from https://projekt-varga.dk/en/front/

7 September 2022 DTU Sustain — Environmental and Resource Engineering RG Urban Water— Maria Faragd, PhD student




w— |
ﬁ
=

>

Environmental performance

Environmental
impact assessment

|
|
|
|
|
|
|
|
|
|
: n Current performance
|
|
|
|
|
|
|

+ Mass/Energy balances

I A [T

3) Interpretation (I1SO 14045, 2012)

ECO-EFFICIENCY METHODOLOGY ==
1) Goal & Scope Definition
I T
' 2) ’
| + CO, Abatement costs
i € Economic added ,
| value assessment \I N S
i ) ZOM/ rachnolgglgs
:
! €
: E Improving existing
i w technologies
|
|
|
|

7 September 2022 nvironme e Engineeri Maria Faragé, PhD fellow



w— |
ﬁ
=

i

What is LCA?
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ENVIRONMENTAL IMPACT ASSESSMENT:
LIFE CYCLE ASSESSMENT

Cradle to grave approach: Inventory of materials’ consumption and emissions along

the life cycle of the system

To air: e.g. CO,, CH,, N,O
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Material Construction/ Operation/ Dismantling/
generation Installation Maintenance Disposal
Concrete, steel, Excavation, Energy, Recycling,
gravel, HDPE o) backfilling ) Chemicals row Incineration
V v v
To soil Co-products To water
Transportation Emissions to the Co-products
| environment
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INVENTORY DATA FOR N,0 SENSORS -
A

N,O WASTEWATER SYSTEM Life cycle stage Parameter Amount Unit
Material Controller: TFT (Thin-film-transistor) touch screen + electronics 0.064 kg
Material Controller: Housing (case made of plastic (ABC)) 0.33 kg
Material Controller: Housing (electronics) 0.33 kg
Material Sensor body: aluminium alloy 0.24 kg
Material Sensor head POM acetylcopolymer 1.20 kg
Transport Distance from the production location to Avedare WRRF 700 km
Transport Transport (sensor + controller) to Avedgre WRRF 1515 kg.km
Operation Electricity for the sensors negligible negligible
Operation Chemicals during calibration negligible negligible
Disposal Controller: TFT + electronics - electronic waste recycling 0.39 kg
Disposal Controller: Housing (plastic) - recycling 0.33 kg
Disposal Sensor body: aluminium - recycling 0.24 kg
Disposal Sensor head: POM - recycling 1.20 kg
Transport Transport sensors and controllers to recycling stations 65 kg.km
Lifetime Controller (housing, TFT touch screen + electronics) 10 years

# of UNISENSE sensors 4 Lifetime Sensor body 5 years

# of controllers 2 Lifetime Sensor head 6 months
Emissions N,O emissions — Activated Sludge 52.7 tons
(RF Baseline)
Emissions N,O emissions — Activated Sludge 31.6 tons
(RF alternatives)
Costs CAPEX: initial investment 113,799 €2019

(one-time cost)
Costs CAPEX: re-investments 7,800 €2019
(yearly)
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ALTERNATIVES DEFINITION & SYSTEM BOUNDARIES

= RF-Baseline
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AN -
digestion Dewatering incineration Qdﬂll (mterD
Heat
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! <
Biogas 4
upgrading
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ALTERNATIVES DEFINITION & SYSTEM BOUNDARIES >

THE COMPLEXITY
" WRRF INCREASES

N,O sensors
(real-time control)
Rotating Activated Secondary | Treated
Wast T e[ SRR ..
astewater belt filters sludge Clarifier WW
] |
Sludge
Anammox
\ 4 I
Anaerobic . DS Drying & SSA SSA
> ———
digestion Dewatering incineration treatment
Heat
Biogas < Reused in the plant
Power to H, Bio- CO, +4H, > VL i
Hydrogen "I methanation | CH.+2H,0 phosphate Sand & Affected systems:
metals [ \Nastewater treatment
——p Excess heat . Recipient
Oxygen Excess heat Bio- & neo-methane . Emissions o air
» Electricity
Novel technologies in WRRF . Gas

* District heating
* Cement production
« & more...
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ALTERNATIVES’ DEFINITION

RF BASELINE Primary clarifier + conventional AS for nitrogen removal and chemical
phosphate removal. Sludge treatment: AD+DW+INC.

RF N20 + Four sensors for online N,O measurement & control installed in the aeration
tanks

RF N20+CH4 + Biologically upgrading of biogas through bio-methanation + P2H (electrolysis)

RF N20+CH4+P + P recovery (MCP) and Al, Fe and sand from sludge ashes

RF N20+CH4+P+C + A pre-filtration (PF) unit with 16 filters with aid of flocculants

RF N20+CH4+P+C+AX + A sidestream anammox (anaerobic ammonium oxidation) to remove nitrogen
from the sidestream to the activated sludge system
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MASS BALANCE: FATE OF N,P, COD
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Table 4
The fate of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) in wastewater. Inlet loads: TN: 1,300 ton/year; TP: 193 ton/year; COD: 16,484
ton/year.
RF RF RF RF RF RF
Baseline N20 N20+CH4 N20+CH4+P N20+CH4+P+C N20+CH4+4P+C+AX
TN-fate N to cleaned effluent 8% 8% 8% 8% 8% 7%
N to air (converted to No-N) 76% 77% 77% 77% 77% 78%
|N to air (converted to N»O-N) 2.6% 1.6% 1.6% 1.6% 1.6% 1.7%
N to landfill (sludge ashes) o 13% 13% 13%
TP-fate P to cleaned effluent 7% 7% 7%
P to landfill (sludge ashes) 93% 5% 5%
P recovered in feed phosphate 0% 89% 89%
COD- COD to cleaned Effluent 4% 4% 4% 4% 4% 4%
fate COD in activated sludge/aeration (used by 33% 33% 33% 33% 21% 21%
microorganisms)
COD anaerobically digested (converted to biogas) 34% 34% 34% 34% 42% 42%
COD In dewatered sludge to incineration 30% 30% 30% 30% 34% 34%
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ENVIRONMENTAL IMPACT ASSESSMENT
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Climate Change L. . . .
801 - g g 5 =*N,O emissions -> the major contributor to CC impacts
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! o | wm P - 2 =Online control of N,O reduced CC impacts by app. 35%
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2 4E01 ; i i | - . ..
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[FU: 1 m3 wastewater inlet]
Wastewater treatment: baseline operation m Discharge to sea: water pollution
% GHG direct emissions: CH4  Biomethane --> Natural gas substitution
B GHG direct emissions: N20 | m Neomethane (P2H) --> Natural gas substitution
P-recovery: other co-products substitution m Additional bio- and neomethane (pre-filtration)
P-recovery: chemicals & electricity consumption, landfill and transp M P-recovery: Monocalcium phosphate (MCP) substitution
W Materials: new infrastructures 1 Heat substitution
Others + Net impacts
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ENVIRONMENTAL IMPACT ASSESSMENT
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Equipment for real-time measurement and control of N,O
achieved no significant impacts in other environmental

categories (<0.4%).
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# GHG direct emissions: CH4

B GHG direct emissions: N20 |

P-recovery: other co-products substitution

P-recovery: chemicals & electricity consumption, landfill and transp

W Materials: new infrastructures

Others

m Discharge to sea: water pollution

 Biomethane --> Natural gas substitution

m Neomethane (P2H) --> Natural gas substitution

m Additional bio- and neomethane (pre-filtration)

M P-recovery: Monocalcium phosphate (MCP) substitution
1 Heat substitution

¢ Net impacts
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ENVIRONMENTAL IMPACT ASSESSMENT

Anammox in the sidestream reject flow of the dewatering process
alleviates activated sludge system load and improves N removal
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ECONOMIC IMPACTS:
VALUE CREATION COMPARED TO WILLINGNESS TO PAY

i

| 222-675 €/ton CO,,, avoided |

2€/ton CO,_,, avoided

| 273-641 €/ton CO,, avoided

2.5€-01 :
I :
2.0E-01 . :
o . : : :
; 5 i : Total Value Added across stakeholders
1.5e-01 . % Net VA: water user
'::I_ € Net VA: wastewater operator
“ 1.0e-01 © Net VA: P-recovery company
: i : i : © Net VA: State/Government
5.0E-02 : E : # Scenario Analysis: TVA with internalized CO2-eq allowance costs
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=  The TVA decreased with the implementation of resource recovery technologies by 19%, primarily due to the increase in
operational costs (+70%) that counterbalanced the increase in revenue (+26%). The real-time measuring and control of
N20 emissions was the cheapest technology.

= Internalising the CO,-eq emissions did not significantly decrease the TVA in RF-Baseline suggesting that the current CO,-
eq allowance price is either too low or that wastewater operator should take further actions to reduce emissions.
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CONCLUSIONS

» The implementation of the real-time measurement and control of N,O achieved the
highest reduction in direct CO,-eq emissions (-35%), with no significant impacts in
other environmental categories (<0.4%).

= Real-time measurement and control of N,O was the cheapest solution and did not
significantly decrease the economic value (0.2%).

= Wastewater operators are in control of reducing direct N,O emissions (scope 1
emissions) and the equipment used (scope 3).

= Energy consumption (scope 2) and avoided impacts (scope 4) due to improved on-site
energy efficiency depend on the background energy mix which is outside the
wastewater operator’s control and total CO,_., emissions may increase if background
electricity providers reduce their share of renewables.

» LCA assessments are necessary to evaluate technological advances in a WRRF and
the potential impacts not captured by carbon footprints (e.g. additional renewable
energy and chemicals consumption) and trade-offs.
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