Unisense Webinar: Working towards Net Zero September 7th, 2022

The role of N₂O emissions in the life cycle assessment of a water resource recovery facility in Copenhagen

Maria Faragò, PhD fellow & consultant at Rambøll

BACKGROUND & MOTIVATION

- Wastewater treatment in Denmark contributes to 10% of the total waste sector's GHG emissions (Nielsen et al., 2020)
- N₂O emissions from nitrification/denitrification are a major source of GHG from wastewater
- Wastewater is also a resource.
- Residual sludge contains nutrients such as phosphorous (app. 5,000 ton P/year). 24% of sludge is incinerated and hence lost (Jensen et al., 2015)
- Ca. 51 WWTPs in Denmark produce biogas hence energy from sludge ^[1]

[1] https://xn--kkkenkvrnen-g9a1u.dk/affaldssortering/biogasproduktion-i-danmark/

CASE STUDY

- Capacity of 400,000 PE
- Energy recovery plant
- Exporting biogas, heat

Future strategy:

 Retrofitting the plant to a water resource recovery facility (WRRF) in the year 2025^[1]

Major goals:

- Reduce CO₂ emissions
- Recover more energy
- Recover phosphorus and other resources like sand and metals

THE "VARGA" PROJECT

Fig. 1. Main system components/boundaries of the full-scale water resource recovery facility (WRRF). WP: work packages for implementing different resource recovery technologies. Figure edited from https://projekt-varga.dk/en/front/

4

ECO-EFFICIENCY METHODOLOGY

What is LCA?

7 September 2022 DTU Sustain – Environmental and Resource Engineering

ENVIRONMENTAL IMPACT ASSESSMENT: LIFE CYCLE ASSESSMENT

<u>Cradle to grave</u> approach: Inventory of materials' consumption and emissions along the life cycle of the system

INVENTORY DATA FOR N₂O SENSORS

N₂O WASTEWATER SYSTEM

ife cycle stage	Parameter	Amount	Unit
Material	Controller: TFT (Thin-film-transistor) touch screen + electronics	0.064	kg
Material	Controller: Housing (case made of plastic (ABC))	0.33	kg
Material	Controller: Housing (electronics)	0.33	kg
Material	Sensor body: aluminium alloy	0.24	kg
Material	Sensor head POM acetylcopolymer	1.20	kg
Fransport	Distance from the production location to Avedøre WRRF	700	km
Fransport	Transport (sensor + controller) to Avedøre WRRF	1515	kg.km
Operation	Electricity for the sensors	negligible	negligible
Operation	Chemicals during calibration	negligible	negligible
Disposal	Controller: TFT + electronics - electronic waste recycling	0.39	kg
Disposal	Controller: Housing (plastic) - recycling	0.33	kg
Disposal	Sensor body: aluminium - recycling	0.24	kg
Disposal	Sensor head: POM – recycling	1.20	kg
Fransport	Transport sensors and controllers to recycling stations	65	kg.km
_ifetime	Controller (housing, TFT touch screen + electronics)	10	years
_ifetime	Sensor body	5	years
_ifetime	Sensor head	6	months
Emissions	N ₂ O emissions – Activated Sludge	52.7	tons
RF Baseline)			
Emissions	N ₂ O emissions – Activated Sludge	31.6	tons
RF alternatives)			
Costs	CAPEX: initial investment	113,799	€2019
		(one-time cost)	
Costs	CAPEX: re-investments	7,800	€2019
		(yearly)	

DTU

ALTERNATIVES DEFINITION & SYSTEM BOUNDARIES

RF-Baseline

ALTERNATIVES DEFINITION & SYSTEM BOUNDARIES

ALTERNATIVES' DEFINITION

Alternative	Description
RF BASELINE	Primary clarifier + conventional AS for nitrogen removal and chemical phosphate removal. Sludge treatment: AD+DW+INC.
RF N2O	+ Four sensors for online $\rm N_2O$ measurement & control installed in the aeration tanks
RF N2O+CH4	+ Biologically upgrading of biogas through bio-methanation + P2H (electrolysis)
RF N2O+CH4+P	+ P recovery (MCP) and AI, Fe and sand from sludge ashes
RF N2O+CH4+P+C	+ A pre-filtration (PF) unit with 16 filters with aid of flocculants
RF N2O+CH4+P+C+AX	+ A sidestream anammox (anaerobic ammonium oxidation) to remove nitrogen from the sidestream to the activated sludge system

MASS BALANCE: FATE OF N,P, COD

Table 4

The fate of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD) in wastewater. Inlet loads: TN: 1,300 ton/year; TP: 193 ton/year; COD: 16,484 ton/year.

		RF Baseline	RF N2O	RF N2O+CH4	RF N2O+CH4+P	RF N2O+CH4+P+C	RF N2O+CH4+P+C+AX
TN-fate	N to cleaned effluent	8%	8%	8%	8%	8%	7%
	N to air (converted to N ₂ -N)	76%	77%	77%	77%	77%	78%
	N to air (converted to N ₂ O-N)	2.6%	1.6%	1.6%	1.6%	1.6%	1.7%
	N to landfill (sludge ashes)	20%	1/20	13%	13%	13%	1200
TP-fate	P to cleaned effluent			7%	7%	7%	
	P to landfill (sludge ashes)	6		93%	5%	5%	
	P recovered in feed phosphate			0%	89%	89%	
COD-	COD to cleaned Effluent	4%	4%	4%	4%	4%	4%
fate	COD in activated sludge/aeration (used by	33%	33%	33%	33%	21%	21%
	microorganisms)						
	COD anaerobically digested (converted to biogas)	34%	34%	34%	34%	42%	42%
	COD In dewatered sludge to incineration	30%	30%	30%	30%	34%	34%

ENVIRONMENTAL IMPACT ASSESSMENT

[FU: 1 m³ wastewater inlet]

• N_2O emissions -> the major contributor to CC impacts

Online control of N₂O reduced CC impacts by app. 35%

A specific control was developed during a monitoring campaign between 2018 and 2019 by Chen et al. (2019)

 Side-stream anammox saved electricity consumption for aeration but increased N2O emissions (EF : 3% of TN removed) (Andersen et al., 2016; Uri Carreno, 2016).

Wastewater treatment: baseline operation	Discharge to sea: water pollution		
% GHG direct emissions: CH4	Biomethane> Natural gas substitution		
GHG direct emissions: N2O	Neomethane (P2H)> Natural gas substitution		
P-recovery: other co-products substitution	Additional bio- and neomethane (pre-filtration)		
P-recovery: chemicals & electricity consumption, landfill and transp	P-recovery: Monocalcium phosphate (MCP) substitution		
Materials: new infrastructures	Heat substitution		
Others	♦ Net impacts		

ENVIRONMENTAL IMPACT ASSESSMENT

[FU: 1 m³ wastewater inlet]

- Wastewater treatment: baseline operation
- **%** GHG direct emissions: CH4
- GHG direct emissions: N2O
- P-recovery: other co-products substitution
- P-recovery: chemicals & electricity consumption, landfill and transp
- Materials: new infrastructures
- Others

Equipment for real-time measurement and control of N_2O achieved no significant impacts in other environmental categories (<0.4%).

- Discharge to sea: water pollution
- Biomethane --> Natural gas substitution
- Neomethane (P2H) --> Natural gas substitution
- Additional bio- and neomethane (pre-filtration)
- P-recovery: Monocalcium phosphate (MCP) substitution
- Heat substitution
- Net impacts

DTU

ENVIRONMENTAL IMPACT ASSESSMENT

Anammox in the sidestream reject flow of the dewatering process alleviates activated sludge system load and improves N removal

- Wastewater treatment: baseline operation
- **%** GHG direct emissions: CH4
- GHG direct emissions: N2O
- P-recovery: other co-products substitution
- P-recovery: chemicals & electricity consumption, landfill and transp
- Materials: new infrastructures
- Others

- Discharge to sea: water pollution
- Biomethane --> Natural gas substitution
- Neomethane (P2H) --> Natural gas substitution
- Additional bio- and neomethane (pre-filtration)
- P-recovery: Monocalcium phosphate (MCP) substitution
- Heat substitution
- Net impacts

16

ECONOMIC IMPACTS: VALUE CREATION COMPARED TO WILLINGNESS TO PAY

- The TVA decreased with the implementation of resource recovery technologies by 19%, primarily due to the increase in operational costs (+70%) that counterbalanced the increase in revenue (+26%). The real-time measuring and control of N2O emissions was the cheapest technology.
- Internalising the CO₂-eq emissions did not significantly decrease the TVA in RF-Baseline suggesting that the current CO₂eq allowance price is either too low or that wastewater operator should take further actions to reduce emissions.

CONCLUSIONS

- The implementation of the real-time measurement and control of N₂O achieved the highest reduction in direct CO₂-eq emissions (-35%), with no significant impacts in other environmental categories (<0.4%).
- Real-time measurement and control of N₂O was the cheapest solution and did not significantly decrease the economic value (0.2%).
- Wastewater operators are in control of reducing direct N₂O emissions (scope 1 emissions) and the equipment used (scope 3).
- Energy consumption (scope 2) and avoided impacts (scope 4) due to improved on-site energy efficiency depend on the background energy mix which is outside the wastewater operator's control and total CO_{2-eq} emissions may increase if background electricity providers reduce their share of renewables.
- LCA assessments are necessary to evaluate technological advances in a WRRF and the potential impacts not captured by carbon footprints (e.g. additional renewable energy and chemicals consumption) and trade-offs.

THANK YOU FOR YOUR ATTENTION!

MFAR@ENV.DTU.DK; MFAR@RAMBOLL.DK

WWW.LINKEDIN.COM/IN/MARIAFARAGO

BIOFOS

ACKNOWLEDGMENTS:

SPECIAL THANKS GO TO ALL THE PROJECT PARTNERS AND THE DANISH ENVIRONMENTAL PROTECTION AGENCY FOR FUNDING THE PROJECT

REFERENCES

- Andersen, M., Nyrup Drejer, L., Nielsen, P. H., Eriksen, S., & Uri, N. (2016). Energi- og emissionsoptimering ved anvendelse af deammonifikationsprocesser i hoved- og sidestrøm. https://www.danva.dk/publikationer/vudprapporter/energi-og-emissionsoptimering-ved-anvendelse-af-deammonifikationsprocesser-i-hoved-og-sidestroem/
- Uri Carreño, N. (2016). Controlling Nitrous Oxide Emissions from a Full-Scale Deammonification Process University of Southern Denmark. June.
- Chen, X., Mielczarek, A. T., Habicht, K., Andersen, M. H., Thornberg, D., & Sin, G. (2019). Assessment of Full-Scale N2O Emission Characteristics and Testing of Control Concepts in an Activated Sludge Wastewater Treatment Plant with Alternating Aerobic and Anoxic Phases. *Environmental Science and Technology*, *53*(21), 12485–12494. https://doi.org/10.1021/acs.est.9b04889
- Faragò, M., Damgaard, A., Madsen, J. A., Andersen, J. K., Thornberg, D., Andersen, M. H., & Rygaard, M. (2021). From wastewater treatment to water resource recovery: Environmental and economic impacts of full-scale implementation. *Water Research*, 204, 117554.
- Levidow, L., Lindgaard-Jørgensen, P., Nilsson, Å., Skenhall, S. A., & Assimacopoulos, D. (2016). Process ecoinnovation: assessing meso-level eco-efficiency in industrial water-service systems. *Journal of Cleaner Production*, *110*, 54-65.
- ISO 14045, 2012. Miljøledelse Vurdering af produktsystemers øko-effektivitet Principper, krav og vejledning.
- Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K.H., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Bentsen, N.S., Rasmussen, E., Petersen, S.B., Olsen, T.M., Hansen, M.G., 2020. Denmark's National Inventory Report 2020: Emission Inventories 1990-2018 Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol.