

National N₂O mapping and reduction of N,O-emission from Fornæs WWTP through advanced online-control

Ellen Marie Drastrup*

Jakob Fink**

*Krüger A/S, Veolia Water Technologies, Denmark, emd@kruger.dk **Aarhus University, 201607148@post.au.dk

INTRODUCTION

Nitrous oxide (N₂O) has been identified as a significant contributor to the water sector's carbon footprint. N₂O is produced as a byproduct of nitrogen removal in biological wastewater treatment plants (WWTP), and it is therefore obligatory for the water sector to look into this if they want to reduce their carbon footprint.

The scope of this project is to identify different N₂O pathways by looking into examples from Danish WWTP plants. The design, composition of load and control strategy have a big impact on the N₂O production of the specific plant, and will impact which N₂O pathway which is dominant. Only by data observation and analysis can the correct control method be applied, and N₂O reduced. Due to lack of data from Fornæs WWTP, this poster will use an example

N2O mechanisms \rightarrow Selected control method

- **Production of N₂O in the**
- denitrification-phase
- (Heterotrophic) denitrification)
- Production of N₂O during aeration and high NH4 Ioads. (Nitrifier)

denitrification)

- Controlled dosing of COD during denitrification
- Extended denitrification-phase until N_2O is belove a setpoint.

Force aeration to stop when N_2O reaches a setpoint*

Equalize loads if possible

from Næstved WWTP.

N₂O production pathways Aerobic Anoxic $NH_4^+ \rightarrow NH_2OH \rightarrow NO_2^- \rightarrow NO_3^- \rightarrow NO_2^- \rightarrow N$ NO

NN - Nitrifier nitrification pathway: Carried out be AOB (ammonia oxidizing) bacteria). Related to increased ammonium oxidation rate (AOR). Also affected by increasing temperature and increasing pH

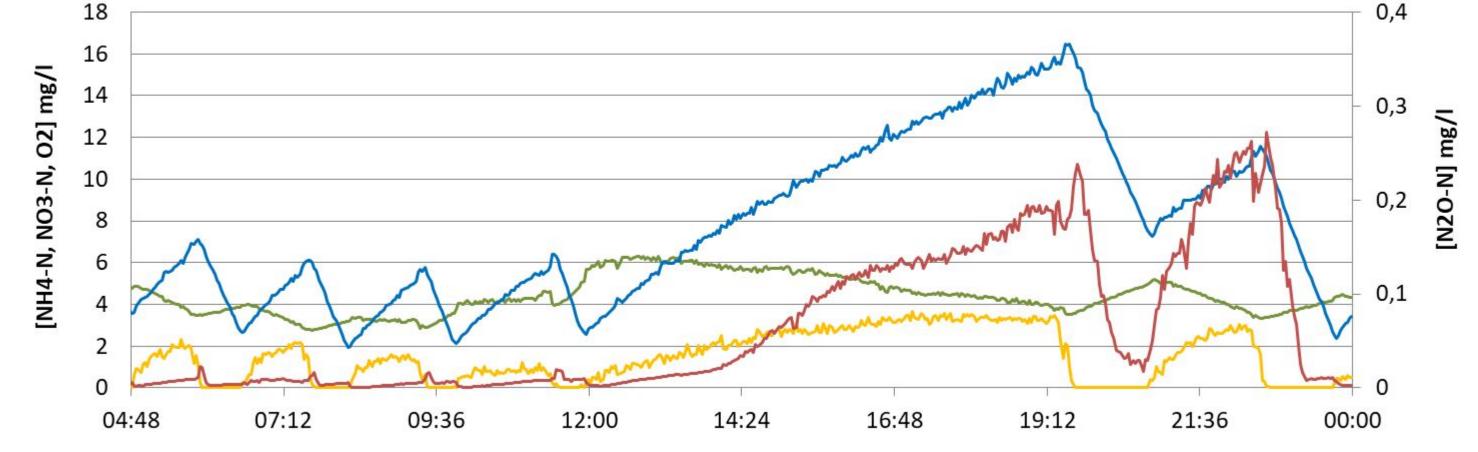
ND - Nitrifier denitrification pathway: Carried out by AOB. Relates to a limited oxygen availability and excess of NO_2^{-1} .

HD - Heterotrophic denitrification pathway: Carried out by heterothrophic bacteria. Relates to carbon limited conditions. Are also affected by decreasing temperature and decreasing pH.

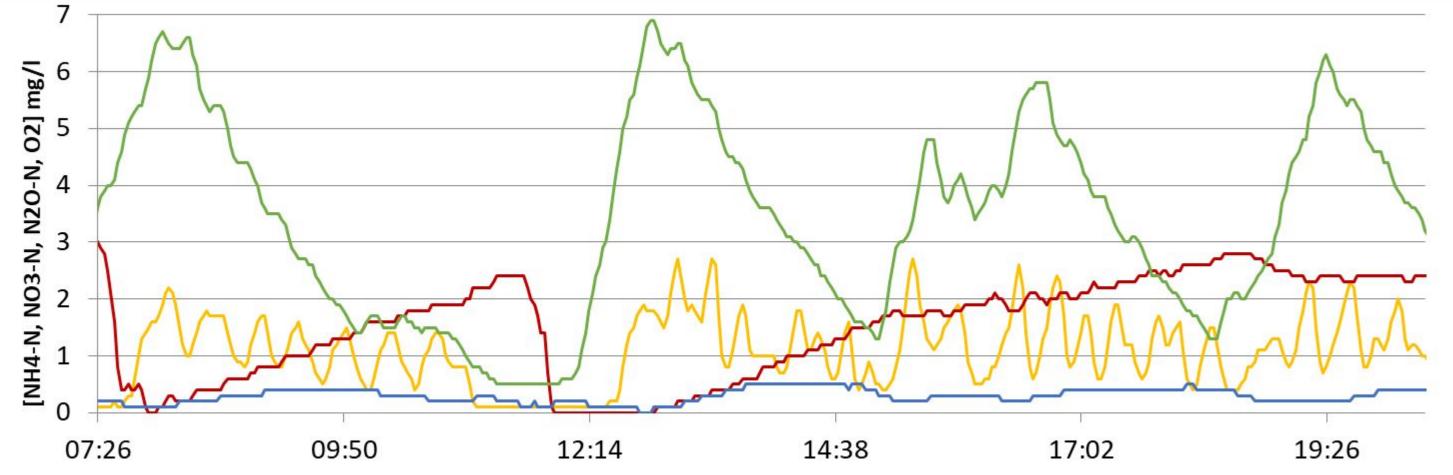
> —NH4-N -02 -NO3-N -N2O-N

Increase the O₂ level

METHODS


In order to observe how N_2O is produced in relation to NH_4 , NO_3 and O_2 -levels, it is crucial to have online sensors in the waterphase. Most Danish WWTPs do already have online NH_4 , NO_3 and O_2 sensors in order to observe and control the nitrogen removal processes. Next step has been to install N₂O-online sensor in the waterphase. By being part of many $N_2\bar{O}$ measuring-project, we have had the opportunity to gather knowledge from a broad range of Danish WWTP. Here examples from 4 WWTP is shown.

N₂O is produced through three different pathway during nitrification (N) and denitrification (\overline{DN}) . It varies a lot from plant to plant which pathway is dominant, and what N₂O-pattern we see in the online data. It is not always clear which pathway that is dominant or the reason for a high N_2O .


To try to understand the N₂O-production at each plant, we have looked into the data, and observed how NH₄, NO₃, \overline{O}_2 and N₂O relates. That requires qualitative analysis of the figures of measured data. When the dominant pathway have been identified it is possible to suggest a control method.

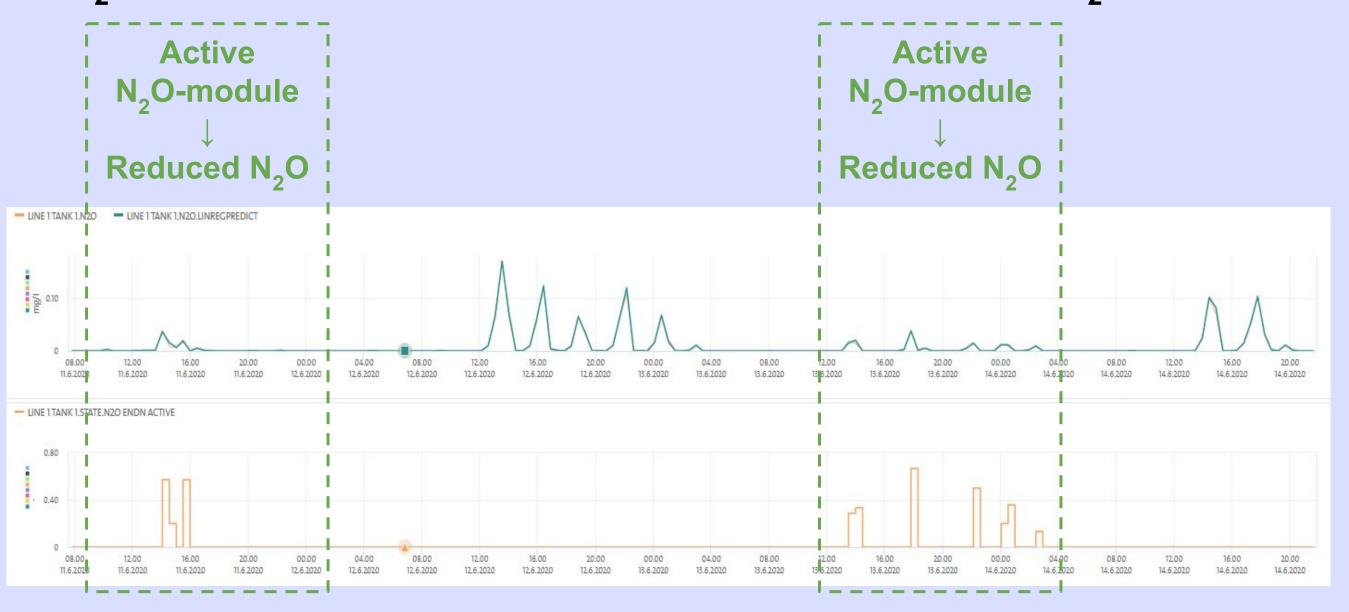
Based on literature and in-situ experience, three N₂O control methods has been selected (see above).

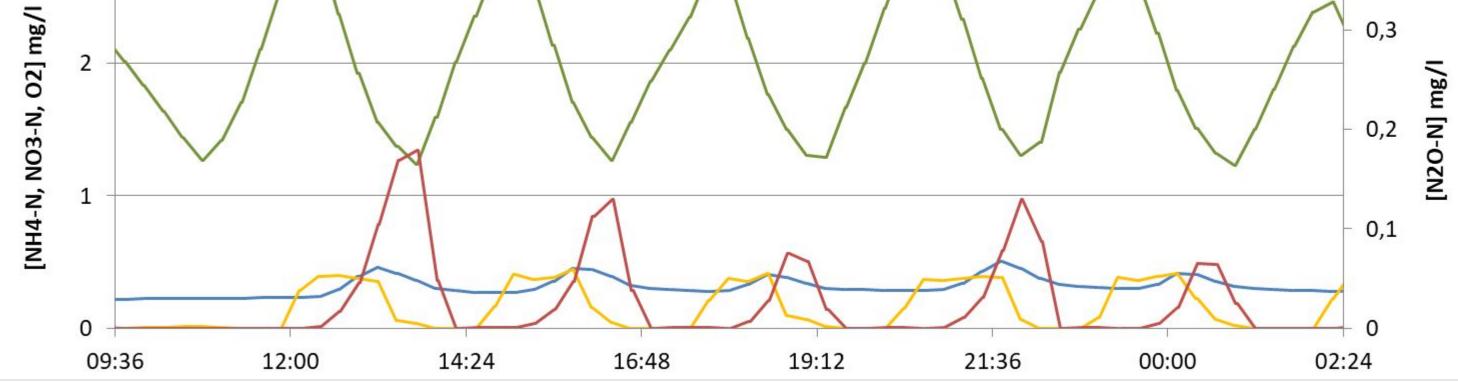
18

Example of N₂O-production at Mariagerfjord WWTP 3/1-2020 (NN-pathway). N₂O is produced during aeration, and removed in the breaks when O_2 is removed. Because of high amounts of COD, the \hat{N}_2O is easily removed in the DN-phase. The 2. selected control method should be applied.

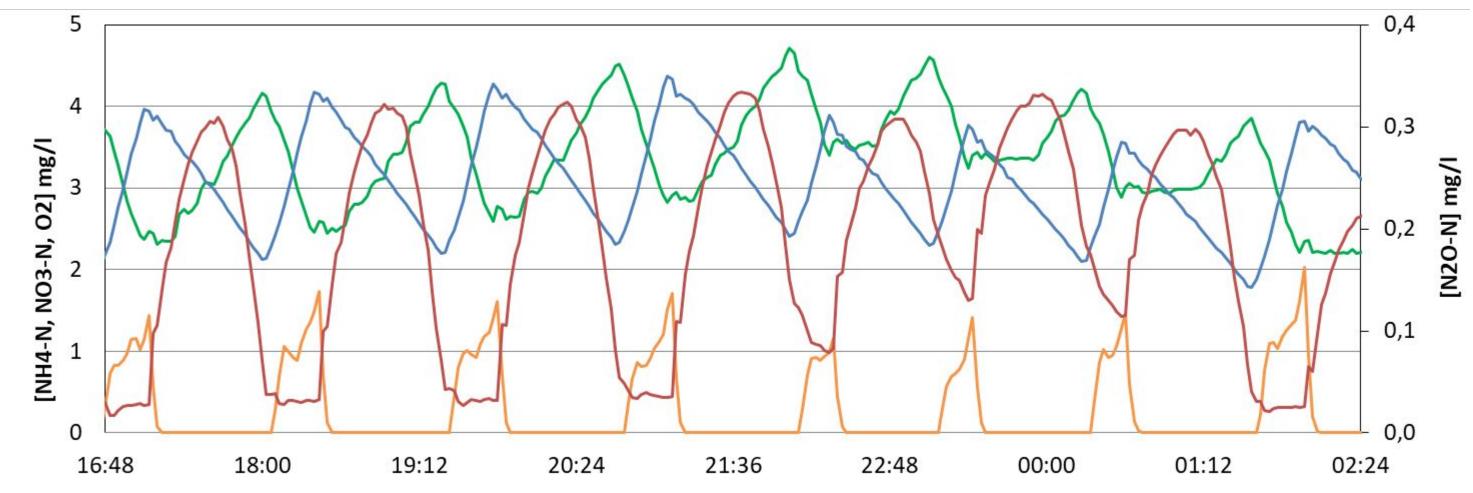
Example of N₂O-production at Avedøre WWTP from the 10/5- 2022 (NN-pathway). N₂O is produced during aeration, and removed in the short breaks when O_2 reaches 0. The 2. selected control method should be applied.

Avedøre WWTP is part of the innovation project BIOKIN, funded by the VTU-Fonden, which aims to reduce N₂O through estimation of ammonium oxidation rate.




RESULTS & DISCUSSION

In order to take action about N_2O reduction, the following method has been identified:


- Go through you treatment plant in order to find the relevant processtanks, where nitrogen removal takes place.
- Install N₂O sensor in the processtank
- Observe the pattern of N₂O production
- Select the control strategy based on the observed N₂O mechanism
- Implement the control strategy through advanced online control.
- Evaluate the N₂O reduction and reconsider

*N₂O reduction through Hubgrade Advanced Control N₂O-Module

Example of N₂O-production at Næstved WWTP from the 12/6- 2020 (ND-pathway). N₂O is produced during aeration at low oxygen-levels. The 3. selected control method should be applied.

Example of N₂O-production at Aalborg East WWTP from 2019 the 26/5-2019 (HD-pathway). N₂O is produced in the beginning of the DN phase and removed in the end of the DN phase. The 1. selected control method should be applied.

Example of N₂O-reduction at Næstved WWTP. N₂O is produced during the aerated phase due to the ND passway. To reduce N₂O emission, the aerated phase is interrupt when N₂O reach a certain setpoint. The N₂O is quickly reduced when the O₂ is removed, showing sufficient COD for destruction of \bar{N}_2O . The activation of the N₂O-module $\overline{d}o$ not affect the NH₄ in the outlet.

CONCLUSIONS

N₂O play a major part of wastewater treatment plants climate impact and it is crucial to look into this challenge for all plants in order to tackle it.

In order to reduce N₂O, the first step is to get knowledge of the amounts and the pattern of production, in order to interpret the biological pathways.

First when you have this knowledge, you can choose the best control method and start reducing the emission.

References:

- Fink, J. 2022. Analysis, mitigation and modeling of nitrous oxide emission from Fornæs wastewater treatment plant. Master thesis, Department of Biological and Chemical Engineering, Aarhus University.
- Ekström, S.E.M., Vangsgaard, A.K., Lemaire, R., Valverde Pérez, B., Benedetti, L., Jensen, M.M., Smeths, B.F. (2017). Simple control strategy for mitigating N2O emissions in phase isolated full-scale WWTPs. In Proceedings of 12th IWA Specialized Conferende on Instrumentation, Control and Automation Quebec, Canada; IWA Publishing.

*Krugers patented N2O-module in Hubgrade

inspiring change