UNISENSE ... ENVIRONMENT .

N_2O Mass Transfer Coefficient Calculation from Aeration Field Size and Air Flow

In the aerated reactor the size of the total aeration field (m^2) and the total air flow Q_A (<u>NOTE the unit! m³s⁻¹</u>) for the aerated reactor is known. The total aeration field (m^2) is measured as the reactor surface where leaving air bubbles are <u>detected visually by on-site inspection</u>.

The superficial gas velocity of the aerated reactor is calculated by dividing the total air flow with the aeration field size:

$$v_{g \ 20^{\circ}\text{C}} \cong \frac{Q_{A \ 20^{\circ}\text{C}}}{Aeration \ field \ size}$$
 (1.1)

From the superficial gas velocity of the aerated reactor the N₂O mass transfer coefficient $k_{La_{N2O}}$ can be calculated using the empirical formula 3.2 based on laboratory experiments at 20°C in mixed WWTP liquorⁱ:

$$k_{L}a_{N_{2}0\ 20\ C} = \left\{\frac{D_{R}}{D_{L}}\right\}^{-0.49} \times 34500 \times \left(v_{g\ 20^{\circ}C}\right)^{0.86} \quad (\mathbf{1}.\mathbf{2})$$
$$k_{L}a_{N_{2}0\ 20\ C} = \left\{\frac{D_{R}}{0.815\ m}\right\}^{-0.49} \times 34500 \times \left(v_{g\ 20^{\circ}C}\right)^{0.86} \quad (\mathbf{1}.\mathbf{3})$$

 v_g : Superficial gas velocity of the reactor (m³m⁻²s⁻¹) D_R : Depth over the diffuser of the reactor (m)

 D_L : Depth of the laboratory reactor (0.815 m) $k_L a_{N20}$: $N_2 O$ mass transfer coefficient (d⁻¹)

Finally the $k_{La_{N2O}}$ calculated above is temperature corrected to the process temperature $T_{Process}$:

$$k_L a_{N_2 0 T_{Process}} = k_L a_{N_2 0 20 \,\mathcal{C}} \times (1.024)^{(T_{Process} - 20 \,\mathcal{C})} \quad (\mathbf{1.4})$$

N₂O Emission Formula

The dissolved N₂O concentration and mixed liquor temperature are measured with the N₂O Wastewater System and values used to calculate the temperature compensated N₂O concentration in the aerated reactor (g-N/m³). From the input of the air flow Q_A in the aerated reactor the temperature compensated N₂O mass transfer coefficient $k_L a_{N_2O}$ is calculated using equations 1.1- 1.4.

With the values $k_L a_{N_2O}$ and Q_A known the N₂O emission rate per reactor volume can be calculated using the formula below^{ii,iii} (<u>NOTE the Q_A unit! m³d⁻¹</u>):

Aerated zones:
$$r_{N_20,T_{process}} = H_{N_20,T_{process}} \times S_{N_20} \left[1 - e^{-\frac{k_L a_{N_20}}{H_{N_20,T_{process}}} \cdot \frac{V_R}{Q_{A,T_{process}}}} \right] \times \frac{Q_{A,T_{process}}}{V_R}$$
 (2)
Non – aerated zones: $r_{N_20,T_{process}} = k_L a_{N_20,T_{process}}^{Non-aerated} \times \left[S_{N_20} - \frac{C_{N_20,air}}{H_{N_20,T_{process}}} \right]$ (3)

 $\mathbf{r}_{N_2O,T_{process}}$: N₂O emission rate (g-N N₂O m⁻³d⁻¹) $\mathbf{H}_{N_2O,T_{process}}$: Henrys constant (dimensionless) \mathbf{S}_{N_2O} : N₂O concentration (g-N N₂O m⁻³)

 $\mathbf{Q}_{A,T_{process}}$: Total air flow through reactor per day (m³d⁻¹)

 V_R : Volume of aerated part of reactor (m³) $k_L a_{N_20}$: N₂O mass transfer coefficient (d⁻¹) $C_{N_20,air}$: N₂O concentration in air equilibrium (g-N/m³)

Unisense Environment A/S Langdyssen 5, Lisbjerg DK-8200 Aarhus N Denmark Phone: +45 89 44 95 00 Fax: +45 89 44 95 49 sales@unisense.com www.unisense-environment.com

The dimensionless Henrys constant $H_{N_2O,T_{process}}$ is like the N₂O Wastewater sensor signal dependent on the process temperature and the temperature correction is calculated using equations 4.1- 4.2.

$$H_{N_{2}0,T_{process}} = \frac{1}{k_{H} \cdot R \cdot (T_{process} + 273.15) \cdot 10^{3} \frac{L}{m^{3}}} (4.1)$$
$$k_{H} = k_{H}^{\theta} \times e^{\left(\frac{-\Delta solnH}{R} \cdot (\frac{1}{T_{process} + 273.15} - \frac{1}{T^{\theta} + 273.15})\right)} (4.2)$$

 k_{H}^{θ} : Henrys constant at the std. temp. (mol·L⁻¹·bar⁻¹) $T_{process}$: Mixed liquor temperature (°C) T^{θ} : Standard temperature = 25°C - Δ solnH/R: The enthalpy of the solution (K)

From literature the N₂O mean values for k_{H}^{θ} , - Δ solnH/R and supporting constant numbers are given in the below table:

k _H ^θ (mol·L ⁻¹ ·bar ⁻¹)	$\frac{-\Delta \text{solnH}}{R}$ (K)	<i>C_{N20,air}</i> (g-N/m ³)	R (m ³ ·bar·mol ^{−1} ·K ^{−1})	$k_L a_{N_2 0 T_{process}}^{Non-aerated}(d^{-1})$
0.0247	2675	0.0003	8.314 x 10 ⁻⁵	2 – 4

ⁱ Foley, J., de Haas, D., Yuan, Z.,Lant, P. (2010) Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment, plants. Water Res. 44, 831-844.

ⁱⁱ Schulthess, R. & Gujer W. (1996) Release of nitrous oxide (N2O) from denitrifying activated sludge: Verification and application of a mathematical model, Water Res. 30, 521-530.

Validation papers:

^{III} Baresel, C., Andersson, S., Yang, J., Andersen, M.H. (2016) Comparison of nitrous oxide (N₂O) emissions calculations at a Swedish wastewater treatment plant based on water concentrations versus off-gas concentrations, Advances in Climate Change Research, 7(3), 185-191.

^{iv}Janis E. Baeten, Mark C.M. van Loosdrecht, Eveline I.P. Volcke (2020) When and why do gradients of the gas phase composition and pressure affect liquid-gas transfer? Water Res. 178, 115844