UNISENSE ... ENVIRONMENT .

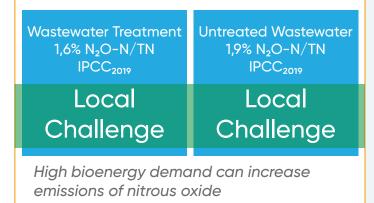
Wastewater treatment plants (WWTP's) contribute significantly to the global greenhouse gas stock through the production and emissions of nitrous oxide (N_2O) , and the more than 3-fold increase of the wastewater N_2O emission factor by IPCC₂₀₁₉ underlines this.

Nitrous oxide emission contributes with about 42% of the CO_2 footprint from Danish WWTPs, emphasizing earlier years underestimation of the impact of N₂O and the importance of control strategies targeted at understanding and reducing N₂O emissions from WWTPs.

Danish studies support the increased IPCC₂₀₁₉ wastewater N₂O emission factor, but also elucidate the large temporal and WWTP site variations. In the VARGA study, N₂O emission control has shown an up to 65% CO₂ footprint reduction potential, while other WWTP sites shows lower N₂O emission. Overall a reduction potential of 50% in CO₂ footprint is expected in Denmark and this number will increase with the new IPCC₂₀₁₉ wastewater N_2O emission factor. However, with the site and temporal variations that exist, online monitoring and control strategies are essential for harvesting this reduction potential.

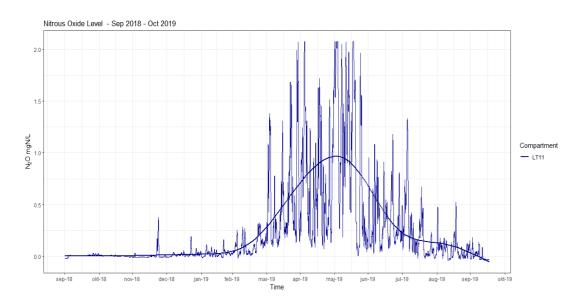
In this note we show data of successful N₂O emission monitoring and control strategies.

Significant 3-fold increase in IPCC₂₀₁₉ wastewater N₂O emission factor supported by Danish Studies


IPCC greenhouse emission factors

In May 2019, IPCC refined the greenhouse gas emission factors and more than tripled the N₂O emission factors emissions for WWTP's incl. the factor for direct sewage discharge to nutrient-impacted freshwater, estuarine, and marine environments.

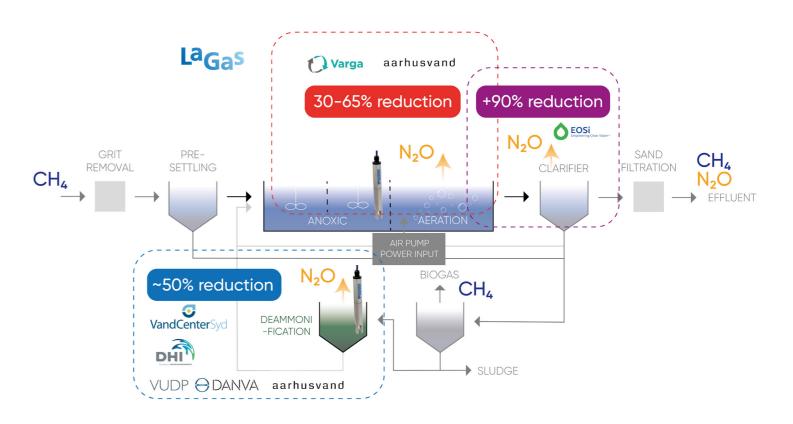
Furthermore, IPCC stated that a shift towards higher bioenergy demand can increase emissions of nitrous oxide. Hence, the ammonia waste from biogas production needs appropriate management approaches to avoid a negative CO₂ footprint impact.

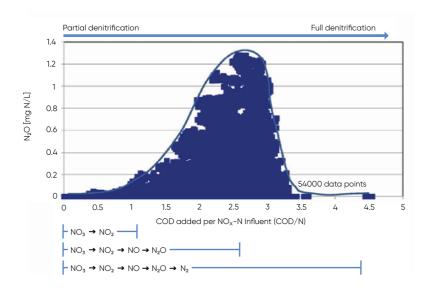

IPCC 2019 report

Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Real-time N₂O monitoring data

More than 1.5 years of online monitoring of the N₂O concentration in a 350,000 PE WWTP shows a highly variable and also dynamic seasonal pattern. In this example, the cumulative N₂O emissions over +365 days was over 2.5% of daily N-load on the plant (not shown). This N₂O emission is 60% higher than the average IPCC₂₀₁₉ factor and indicates the importance of performing on-site monitoring of N₂O rather than relying on average assumption. Moreover, the majority of the emission is accumulated from March to August. Clearly, the large seasonal/monthly variations undermines results deducted from typical short-term scientific monitoring campaigns, especially when results are extrapolated to a seasonal or yearly emission result or an N₂O emission factor.




Mitigation Strategy

A mitigation strategy to decrease the greenhouse gas emission and cost of operation of a WWTP, already dosing carbon sources to improve the effluent quality, is shown in the figure below. To demonstrate the applicability of the N₂O wastewater sensors for automation of COD dosing pumps, two sensors were used in two treatment plants in parallel with NO_x-N probes. The effects of operational conditions such as COD/N ratios and the correlation between NO_x and N2O were followed. In particular, the N₂O production were found to be a function of influent nitrogen load and the ratio of COD/N. A combination of a feedforward control algorithm with nitrates as its measured variable and a feedback control algorithm with N₂O as input variable, was proposed for optimum automation of external carbon source dosage as well as mitigating N₂O as one of the most potent greenhouse gases when a very low nitrogen limit is targeted. By using the N₂O sensor as a proxy sensor for nitrates in a feedback automation of the dosing pumps, N₂O emissions could be completely avoided while the effluent quality was maintained below 1.2 mg N/L NO_x.

VARGA Project

The Danish project VARGA has implemented and tested a number of new controls for minimizing nitrous oxide at the Avedøre WWTP and demonstrated a 30% reduction (4,260 Ton of CO₂ equivalents) early in the project. The full minimization potential is expected to be even greater – up to a 50–80% reduction. Similarly, multiple Unisense Environment clients have demonstrated N₂O minimization potentials between 25% and 90% by controlling aeration, loading, and carbon resources more balanced by integration of the N₂O wastewater sensor. On a Danish scale the reduction potential in Denmark will be 42–152,000 Ton CO₂ equivalents annually, and with the adjusted upward IPCC₂₀₁₉ emission factor, the potential is likely significantly greater.

Version: April 2024

Andalib, M. & Andersen, M. H. et al, Water Sci Tchnol (2017) 77 (2):426-438

Nitrous Oxide process sensor for online wastewater treatment optimization, low-cost greenhouse gas reduction, and reliable sustainability accounting

Unisense Environment A/S

Web: <u>www.unisense-environment.com</u> LinkedIn: <u>Unisense Environment</u>

E-mail: <u>sales@unisense.com</u> Phone: +45 8944 9500

Office hours: Monday-Thursday 8 am to 4 pm (CET) Friday 8 am to 3.30 pm (CET).

